

PTE7300 I²C PRESSURE SENSOR

Installation & Communication Guide

PTE7300 I²C PRESSURE SENSOR

Description

The PTE7300 pressure sensor is the ideal customer solution for challenging measuring requirements for general applications in the mid and high-pressure ranges. The PTE7300 features a wide range of ports and provides an I²C digital pressure output.

Electrical

Pressure Ranges	0-16 bar to 0-600 bar (0-230	psi to 0-8700 psi)
Pressure Reference	Gauge (Module) and Sealed (Gauge (fully hermetic sensor)
Supply Voltage	2.7VDC to 5.5VDC	
Digital Interface	I ² C with CRC (memory integri	ty, and data transmission)
Device Address	0xDA (including CRC)	
	0x6C (excluding CRC)	
Operating Current In Sleep Mode	6.5 uA (typical)	
Operating Current In Active Mode	3.7mA typical (4mA maximur	n)
Available Data	Pressure	(int16, at address 0x30) min./max. of span mapped to ±16000 bit value
	Bridge temperature [*]	(int16, at address 0x2E) -40C+125C mapped to ±16000 bit value
	Status synchronized	(uint16, at address 0x32)
	Device serial	(uint32, at address 0x50 (low word), and address 0x52 (high word))
	Note: Sensata offers a C++ lib	orary available on request that is
	written on Arduino platform,	which allows for plug-n-play
	sensor control and is easy to	port to other platforms.
Resolution	15 bit	
Response Time (default)	< 1 ms	
Probe Configurations	Continuous or On-demand /	single cycle

*Note: the bridge temperature is not part of the production quality control routines. Sensata will not guarantee any performance ratings for the sensor's temperature output. For accurate and reliable temperature measurement, it's advised to use a different sensor with qualified temperature output.

•• PTE7300 Technologies I²C PRESSURE SENSOR **Typical Application Circuit** VDD Power Supply Pull up n SDA PTE7300 Digital I2C sensor SCL EOC Parent L vss ÷

I²C output

PTE7300 SERIES

Note: the pull-up resistor resistance values and cable length highly depend on the application. Typical pull-up resistors are 4.7kOhm for a cable between 1-2 meters. Please note that, in general, a low internal resistance and low internal capacitance cable will increase the action radius since, in that case, the voltage is dropping less over distance. Also, lowering the resistance values increases the current which sharpens the edges of the digital communication signals, but at cost of power consumption when communicating with the device.

Contents

1	Pin	Assignments	5
2	Pin	Descriptions	5
3	Abs	olute Maximum Ratings	5
4	I ² C	interface	6
	4.1	Device Address	6
	4.2	Command Format	7
	4.3	System Operation Modes and State Diagram	9
	4.4	I ² C Bus Timing	9
5	Rev	vision History	

1 PIN ASSIGNMENTS

2 **PIN DESCRIPTIONS**

Pin	Pin Name	Туре	Description
1	ALARM	Output	End of conversion or status output
2	VSUPPLY	S	Supply voltage
3	GND	S	Ground
4	SDA	Input/output	I ² C serial data in/output as fixed function.
5	SDC	Input/output	I ² C clock input as fixed function.

Pin Number	Description
1	(ALARM)
2	VSUPPLY
3	GND
4	SDA
5	SDC

.

1	NODULE
Pin Number	Description
1	(ALARM)
2	VSUPPLY
3	GND
4	SDA
5	SDC

3 ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are stress ratings only. The sensor might not function or be operable below and above the recommended operating conditions given in Table 2. Stresses exceeding the absolute maximum ratings will change the sensor accuracy; lead to imprecision, and eventually cause irreversible damage to the device. In addition, extended exposure to stresses above the recommended operating conditions might affect device reliability. Sensata does not recommend designing to the "Absolute Maximum Ratings."

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Units
VSUPPLY	Maximum Analog Supply Voltage	-0.3	6	V
	Maximum Voltage at all Digital I/O		VSUPPLY+0.3SUPPL	
VD_IO	Pins	-0.3	But ≤ 6	V
TOPERATION	Operation Temperature	-40	100	°C
TSTOR	Storage Temperature	-40	125	°C

4 I²C INTERFACE

Table 3. Operating Conditions

No.	Description	Symbol	Min	Тур	Max	Unit
1	I ² C clock frequency	I ² C_F_SCK			400	kHz
2	I ² C clock low time (tLO)	I ² C_T_LO	1300			ns
3	I ² C clock high time (tHI)	I ² C_T_HI	600			ns
4	I ² C (repeated) start condition hold time (tSH)	I ² C_T_SH	600			ns
5	² C data setup time (tSU)	I ² C_T_SU	100			ns
6	I ² C data hold time (tH)	I ² C_T_H	0			ns
7	I ² C repeated start setup time	I ² C_T_RSH	600			ns
8	I ² C stop condition setup time (tLO)	I ² C_T_PSU	600			ns
9	I ² C rise time (tR)	I ² C_T_R			300	ns
10	I ² C fall time (tF)	I ² C_T_F			300	ns
11	I ² C bus free time between STOP and START conditions (tBUF)	I ² C_T_BUF	600			ns
12	Pulse width of spikes suppressed by the I ² C input filter*)	I ² C_T_SSP	0		500	ns

The I²C child interface provides direct access to the entire memory map of the IC. An external I²C parent (e.g. a μ C) can read and write all memory addresses (registers) of the device using the following commands:

• **Random write:** Sets a memory address and writes data to consecutive memory addresses of the device starting at the set memory address.

• **Random read:** Sets a memory address and reads data from consecutive memory addresses of the device starting at the set memory address.

• **Read last:** Reads data from the device starting at the last memory address set by the parent. This facilitate s repeated reading of the same memory addresses without transmitting a memory address first.

All read/writes must start at **word aligned addresses** (i.e. LSB of memory address equals 0) and read/write an **even number of bytes**. Maximum length for CRC protected read/writes is 4 bytes.

4.1 Device Address

Table 4. Address Definition

Sensata Technologies

 I²C PRESSURE SENSOR

 Device
 0XDA

 address
 0X6C

 Excluding CRC

4.2 Command Format

Commands of I²C EEPROM compatible protocol

	om write									
s	Child address [6:1]	0 0 ack	memory address A0[7:0]	ack	write data D[A0][7:0]	ack	write data D[A0][15:8]	ack P		
ando	om read									
s	Child address [6:1]	0 0 ack	memory address A0[7:0]	ackRS	Child address [6:1]	0 1 ack	read data D[A0][7:0]	ack	read data D[A0+N][15:8]	n ack P
tead	last (starts rea	ding at the sa	me memory address	as the las	t previous read/v	vrite)				
s	Child address	0 rw ack	read data	ack	read data	ack	read da	ta n P		
			of coltricit		of official					
egen	a			Г	7					
								1 14 - 4 -1 - 4 -		

Commands of CRC protected protocol

s	Child address [6:1]	1 0 ack	memory address A0[7:0]	ack len byt	ngth-1 in tes [7:4]	CRC4 [3:0]	ick	write data D[A0][7:0]	ack	write da D[A0+N][1	ta (5:8) a	ck over preceding by	tes ack F
lan	dom read - CRC	protected											
s	Child address [6:1]	1 rw ack	memory address A0[7:0]	ack len	ngth-1 in tes [7:4]	CRC4 [3:0]	ick RS	Child address [6:1]	1 1 ack	read data D[A0][7:0]	ack	CRC8 over preced	ling n ack
-		-					_					+	
												<u> </u>	
lea	d last - CRC pro	tected (read	s at the same memory	y adress wit	ith the sam	e number o	of data	bytes as the pre	vious read/write	:)		- L]	
ea	d last - CRC pro S to a	rtected (read	s at the same memory 4 of last previous valid	y adress wit d random re	ith the sam ead/write	e number o	of data	bytes as the pre slave address [6:1]	vious read/write	read data D[A0][7:0]	ack	CRC8 over preced	ling n p
ea eg	d last - CRC pro S to a end	ck after CRC	s at the same memory 4 of last previous valid	y adress wit d random re	ith the sam ead/write	e number o	of data	a bytes as the pre slave address [6:1]	vious read/write	read data D[A0][7:0]	ack	CRC8 over preced bytes	ling n ack l
eg	d last - CRC pro S to a end start condition	rtected (read ck after CRC RS restart co	s at the same memory 4 of last previous value andition P stop co	y adress wit d random re ndition acl	ith the sam ead/write	e number o edge n d	of data S	a bytes as the pre slave address [6:1]	8bit of data	e) read data D[A0][7:0]	ack	CRC8 over preced bytes	ing n ack

Example:

I²C random read example

Byte #	0	1	2	3	4	5	6	7	8
Send By Parent (SBP)	0xD8	0x2E	0xD9						
SBP Comment	1101100 0 1101100: Child address [6:0] => 0x6C with LSB=0 => no CRC 0: r/w => write	memory address	1101100 1 1101100: Child address [6:0] => 0x6C with LSB=0 => no CRC 1: r/w => read						
Send By Device (SBD)				0xF2	0x7D	OxEA	0x82	0x1E	0x00
SBD Comment				0x2E: DSP_T [7:0]	0x2E: DSP_T [15:8]	0x30: DSP_S [7:0]	0x30: DSP_S [15:8]	0x32: STATUS_ SYNC [7:0]	0x32: STATUS_ SYNC [15:8]

I²C random write example

Byte #	0	1	2	3
Send By Parent (SBP)	0xD8	0x36	0x9E	0xCF
SBP Comment	1101100 0 1101100: Child address [6:0] => 0x6C with LSB=0 => no CRC 0: r/W => write	memory address	written to STATUS[7:0]	written to STATUS[15:8]
Send By Device (SBD)				
SBD Comment				

I²C random read with CRC example

Byte #	0	1	2	3	4	5	6	7	8
SBP (Send By Parent)	0xDA	0x2E	0x31	0xDB					
SBP com- ment	1101101 0 1101101: Child address [6:0] => 0x6D with LSB=1 => with CRC 0: r/w => write	memory address	3: length-1 = 4Byte y: CRC4	1101101 1 1101101: Child address [6:0] => 0x6D with LSB=1 => with CRC 1: r/w => read					
Byte #	0	1	2	3	4	5	6	7	8
SBS (sent by sensor)					0xF2	0x7D	0xEA	0x82	0xE4
SBS com- ment					0x2E: DSP_T [7:0]	0x2E: DSP_T [15:8]	0x30: DSP_S [7:0]	0x30: DSP_S [15:8]	CRC8

I²C random write with CRC example

Byte #	0	1	2	3	4	5
Send By Parent (SBP)	0xDA	0x36	0x16	0x9E	0xCF	0xA1
SBP Comment	1101101 0 1101101: Child address [6:0] => 0x6D with LSB=1 => with CRC 0: r/w => write	memory address	1: length-1 => 2 bytes to write 6: CRC4	written to STATUS[7:0] after CRC8	written to STATUS[15:8] after CRC8	CRC8
Send By Device (SBD)						
SBD Comment						

NOTE: the CRC4 and CRC8 fields are computed in the same bit and byte order as the transmission over the bus. Their polynomials are:

I²C PRESSURE SENSOR

- CRC4 polynomial 0x03, initialization value 0x0F
- CRC8 polynomial 0xD5, initialization value 0xFF

If the CRC4 sent by the I²C parent does not match the CRC4 calculated by the I²C child, the I²C frame is aborted by not sending an acknowledge bit from the child after the CRC4. Additionally, the CRC4 error is reported as the event bit 11 at the STATUS register. If a command is aborted by a CRC4 error, no 'read last' command must follow.

4.3 System Operation Modes and State Diagram

System balances performance and current consumption by different operation mode configurations. The Figure shows the Sensor state diagram.

Command sent to register 0x22	Description
0x7BBA (Idle)	Puts the device into power state idle. Aborts any conversion in progress. The timer counting down the period will be reset.
0x8B93 (Start)	Starts a measurement and put the chip into power state run.
0xB169 (Reset)	Performs a rest with complete power up sequence
0x6C32 (Sleep)	Enter the power state sleep.

4.4 I²C Bus Timing

I²C Bus Timing Behavior

5 PLUG-N-PLAY C++ CLASS LIBRARY

5.1 Installing the library (Arduino IDE)

The PTE7300_I2C library folder should be copied to the local user's

\Documents\Arduino\libraries\ folder to be visible inside Arduino IDE. Example sketches are added for guidance.

The C++ library can also easily be ported to other platforms by rewriting only the constructor and the low-level readRegister and writeRegister methods source code, to modify the interface driver. The higher-level methods remain the same.

5.2 Example Arduino code – reading pressure output

```
readDSP_S §
#include <PTE7300_I2C.h>
PTE7300_I2C mySensor; // attach sensor
int16_t DSP_S; // allocate memory for pressure register value
void setup() {
  // initiate serial communication
  Serial.begin(9600);
3
void loop() (
  // first check is the sensor is connected
  if (mySensor.isConnected()) {
      DSP_S = mySensor.readDSP_S(); // read pressure register value
      Serial.println(DSP_S); // print value to serial bus
  3
  else{
    Serial.println("Device not connected");
  3
  delay(100); // wait for 100ms
```

}

- 1. Create class instance 'mySensor'
- 2. Reserve signed 16 bit integer memory for the pressure value
- 3. Initialize serial interface to readout printed messages on the USB interface
- 4. Check if the sensor communication is ok, using the 'isConnected' method
- 5. Readout the pressure value ('mySensor.readDSP_S' method) and store the value in the pre-allocated memory of the microchip
- 6. Print the value on the USB interface to readout on the connected PC
- 7. If no device is connected, do nothing, and notify the PC that no device has been found

PTE7300

I²C PRESSURE SENSOR

5.3 Class description (UML)

PTE7300_12C
_nodeAddress _bUseCRC
PTE7300_I2C() unsigned int readRegister(uint8_t address, unsigned int number, uint16_t *buffer)
bool isConnected() void CRC(bool tf)
uint32_t readSERIAL() int16_t readDSP_T() int16_t readDSP_S() uint16_treadSTATUS()

The constructor will automatically set the nodeAddress attribute to the default value. A 'bUseCRC' attribute is a boolean flag that is by default true, which controls the CRC checking state on the communication messages. The CRC checking feature can be disabled by means of the 'CRC' method if needed.

The 'isConnected' method is a simple and useful feature to check if the device is responding, prior to communicating with the device, to prevent bus failures or blocking drivers that wait forever. The last set of methods is used to readout information from the device.

6 **REVISION HISTORY**

Revision Date	Description of Change
March 18, 2021	Preliminary version.

11

Copyright © 2021 Sensata Technologies, Inc.

Americas +1 (800) 350 2727

sensors@sensata.com switches@sensata.com Europe, Middle East & Africa +359 (2) 809 1826 pressure-info.eu@sensata.com Asia Pacific sales.isasia@list.sensata.com China +86 (21) 2306 1500 Japan +81 (45) 277 7117

Japan +81 (45) 277 7117 Korea +82 (31) 601 2004 India +91 (80) 67920890 Rest of Asia +886 (2) 27602006 ext 2808